Part V: Scoring Criteria for the Index of Biotic Integrity and the Index of Well-Being to Monitor Fish Communities in Wadeable Streams in the Coosa and Tennessee River Basins of the Blue Ridge Ecoregion of Georgia

Georgia Department of Natural Resources Wildlife Resources Division Fisheries Management Section Stream Survey Team

May 23, 2013

Table of Contents

Introduction	3
Figure 1: Map of Blue Ridge Ecoregion	6
Table 1: Listed Fish in the Blue Ridge Ecoregion	7
Table 2: Metrics and Scoring Criteria.	8
Table 3: Iwb Metric and Scoring Criteria	10
Figure 2: Multidimensional scaling ordination plot	11
Table 4: High Elevation criteria	12
References	13
Appendix A	A1
Appendix B.	B1

Introduction

The Blue Ridge ecoregion (BRM), one of Georgia's six Level III ecoregions (Griffith et al. 2001), forms the boundary for the development of this fish index of biotic integrity (IBI). Encompassing approximately 2,639 mi² in northeast Georgia, the BRM includes portions of four major river basins — the Chattahoochee (CHT, 142.2 mi²), Coosa (COO, 1257.5 mi²), Savannah (SAV, 345.3 mi²), and Tennessee (TEN, 894.2 mi²) — and all or part of 16 counties (Figure 1). Due to the relatively small watershed areas and physical and biological parameters of the CHT and SAV basins within the BRM, and the resulting low number of sampled sites, IBI scoring criteria have not been developed for these basins. Therefore, only sites in the COO and TEN basins, meeting the criteria set forth in this document, should be scored with the following metrics.

The metrics and scoring criteria adopted for the BRM IBI were developed by the Georgia Department of Natural Resources, Wildlife Resources Division (GAWRD), Stream Survey Team using data collected from 154 streams by GAWRD within the COO (89 sites) and TEN (65 sites) basins. Fish communities in streams with watershed areas less than one square mile cannot be assessed using this SOP due to inherently low diversity within headwater streams. Benthic macroinvertebrate assessments may serve as an alternate biological assessment tool for these streams (contact GA Environmental Protection Division (GAEPD) at 404-675-1646 for guidance regarding the appropriateness of benthic macroinvertebrate assessment).

The GAWRD collected a total of 88 of the 108 species known to inhabit wadeable BRM streams in the COO and TEN basins (Appendix A). Species of concern in the BRM include one federally endangered species (Etowah darter, *Etheostoma etowahae*), three federally threatened species (blue shiner, *Cyprinella caerulea*; goldline darter, *Percina aurolineata*; Cherokee darter, *Etheostoma scotti*), one federal species of concern (sicklefin redhorse, *Moxostoma* sp.), and 21 state-listed species (GAWRD—Nongame Conservation Section, 2010; Table 1).

Inherent differences in species richness warranted separate scoring criteria for the COO and TEN basins. Scoring information related to tolerance rankings, feeding guilds, and

species categories are included in Appendix A. Table 2 shows the scoring criteria developed for the thirteen BRM IBI metrics (for metric descriptions refer to GAWRD 2005, Part I, http://www.georgiawildlife.org/node/913). Maximum Species Richness (MSR) graphs are included in Appendix B.

Scores for the BRM IBI ranged from 12 to 56 (potential range 8 to 60) with a median of 36. Based on IBI classes (GAWRD 2005, pg 40), 12 (10 COO, 2 TEN) sites ranked EXCELLENT, 37 (22 COO, 15 TEN) ranked GOOD, 45 (26 COO, 19 TEN) ranked FAIR, 39 (18 COO, 21 TEN) ranked POOR, and 21 (13 COO, 8 TEN) ranked VERY POOR. Fish abundance data was standardized for each site, and sites were grouped based on community similarities. We used Primer 6.0 statistical software for ecological data to determine Bray Curtis similarities between sites (Clarke and Gorley 2001; Clarke and Warwick 2006). We categorized each site by basin and IBI class as determined by the metrics presented here, and averaged fish community data across these categories. Figure 2 illustrates the relative ability of the current metrics to separate sites based on fish community health. The modified Index of well-being (Iwb) scores for the BRM (Table 3) ranged from 2.8 to 9.7 with a median of 7.5.

Regional Diversity

High elevation and high gradient watersheds are common in the BRM, and fish diversity is relatively high when compared to other ecoregions in Georgia. However, some BRM streams represent unique systems where high elevation effects (e.g., cooler water temperatures, widely fluctuating flows, and steep gradient) pose insurmountable barriers to colonization by many fishes. These characteristics are common in high elevation streams throughout the Appalachian Mountains and often result in low fish diversity. Therefore, 27 COO and TEN sites were excluded from this analysis in addition to the BRM sites located in the CHT and SAV basins. We designated these 27 sites as high-elevation/trout-dominated (HETD) streams.

The IBI is designed to assess biotic integrity through the use of fish community metrics representing species richness, species composition, trophic composition, and fish abundance and condition (Fausch et al 1984). Due to the low diversity of the HETD

streams, the attributes of fish communities represented in this BRM IBI are not appropriate for assessing biotic integrity of HETD streams. Criteria for using this BRM IBI, based on river basin, elevation, number of native species, and trout population characteristics, are presented in Table 4. Fish samples not meeting these criteria should be assessed using alternative methods.

Figure 1. Level III Blue Ridge ecoregion (outlined in red) in Georgia. Major river basins include the Chattahoochee, Coosa, Savannah, and Tennessee

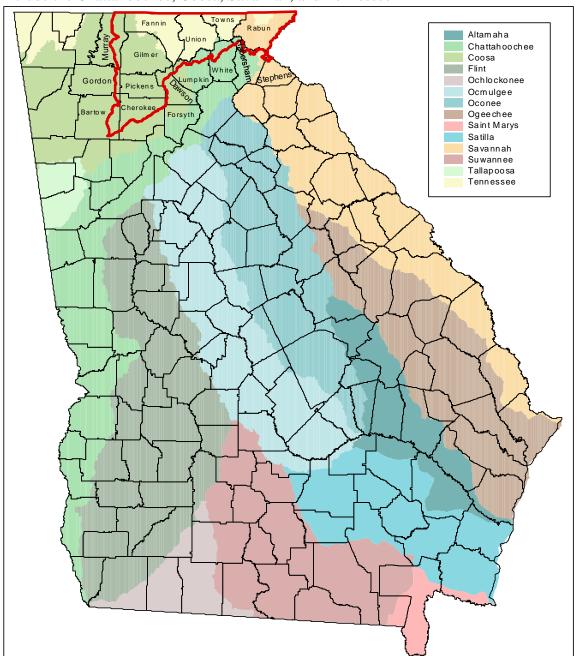


Table 1. State and federal rankings for fish found in the Coosa and Tennessee portions of the Blue Ridge ecoregion of Georgia (Georgia Department of Natural Resources Nongame Conservation Section, 2010).

Species	State	Federal	Basin
Blotched chub (Erimystax insignis)*	E		TEN
Blue shiner (Cyprinella caerulea)*	E	T	COO
Bridled darter (Percina kusha)*	E		COO
Burrhead shiner (Notropis asperifrons)*	T		COO
Cherokee darter (Etheostoma scotti)*	T	T	COO
Coosa chub (Macrhybopsis sp. Coosa chub)	E		COO
Dusky darter (Percina sciera)	R		TEN
Etowah darter (Etheostoma etowahae)*	E	E	COO
Fatlips minnow (Phenacobius crassilabrum)*	E		TEN
Goldline darter (Percina aurolineata)*	E	T	COO
Greenfin darter (Etheostoma chlorobranchium)*	T		TEN
Holiday darter (Etheostoma brevirostrum)*	E		COO
Lined chub (Hybopsis lineapunctata)*	R		COO
Olive darter (Percina squamata)	E		TEN
River redhorse (Moxostoma carinatum)*	R		COO/TEN
Rock darter (Etheostoma rupestre)	R		COO
Sicklefin redhorse (Moxostoma sp. sicklefin redhorse)	E	C	TEN
Silver shiner (Notropis photogenis)	E		TEN
Tangerine darter (Percina aurantiaca)	E		TEN
Trispot darter (Etheostoma trisella)*	E		COO
Wounded darter (Etheostoma vulneratum)	E		TEN

Status: E = endangered; R = rare; T = threatened; C = candidate

Basin: COO = Coosa; TEN = Tennessee

*Collected by GAWRD-SST

Table 2. Index of Biotic Integrity metrics for wadeable streams within the Coosa and Tennessee portions of the Blue Ridge ecoregion of Georgia, that are not high-elevation, trout-dominated (see Table 4). Scoring criteria include slopes of each trisection line (and coordinates where slope of trisection line becomes zero) for metrics 1 – 6 and numerical breaks for metrics 7 - 13.

	Metric	Basin Group	Scoring (Criteria
	Species Richness Metrics		5/3 Breaks	3/1 Breaks
1.	Number of native species	COO	y = 5.12x + 10.20 (1.91, 20.00)	y = 2.56x + 5.10 (1.91, 10.00)
		TEN	y = 3.94x + 7.78 (1.72,14.67)	y = 1.97x + 3.89 (1.72, 7.33)
2.	Number of benthic fluvial specialist species	COO	y = 1.38x + 2.75 (2.35, 6.00)	y = 0.69x + 1.38 (2.35, 3.00)
		TEN	y = 1.01x + 2.00 (1.31, 3.33)	y = 0.50x + 1.00 (1.31, 1.67)
3.	Number of native sunfish species ^a	COO	y = 0.94x + 1.87 (0.84, 2.67)	y = 0.47x + 0.93 (0.84, 1.33)
		TEN	y = 0.64x + 1.27 (2.17, 2.67)	y = 0.32x + 0.63 (2.17, 1.33)
	Number of native centrarchid species ^b	COO	y = 1.21x + 2.40 (1.86, 4.67)	y = 0.60x + 1.20 (1.86, 2.33)
		TEN	y = 0.87x + 1.72 (1.82, 3.33)	y = 0.44x + 0.86 (1.82, 1.67)
4.	Number of native insectivorous cyprinid species	COO	y = 1.16x + 2.28 (2.04, 4.67)	y = 0.58x + 1.14 (2.04, 2.33)
		TEN	y = 1.21x + 2.40 (2.39, 5.33)	y = 0.61x + 1.20 (2.39, 2.67)
5.	Number of native round-bodied sucker species	COO	y = 0.67x + 1.57 (2.28, 3.33)	y = 0.33x + 0.78 (2.28, 1.67)
		TEN	y = 0.60x + 1.20 (2.43, 2.67)	y = 0.30x + 0.60 (2.43, 1.33)
6.	Number of sensitive species ^a	COO	y = 0.67x + 1.30 (2.05, 2.67)	y = 0.33x + 0.65 (2.05, 1.33)
		TEN	y = 0.87x + 1.73 (1.84, 3.33)	y = 0.43x + 0.87 (2.05, 1.67)
	Number of intolerant species ^b	COO	y = 0.83x + 1.63 (5.20, 6.00)	y = 0.42x + 0.82 (5.20, 3.00)
	•	TEN	y = 1.00x + 2.00 (1.33, 3.33)	y = 0.50x + 1.00 (1.33, 1.67)
			j =10011 : =100 (1.00, 0.00)	j 3.3 3.1 · 1.3 3 (1.5 5) 1.0 /)

Table 2 continued.

	Metric	Basin Group	Scoring Criteria		
	Species Composition Metrics		<u>5</u>	<u>3</u>	<u>1</u>
7.	Evenness	COO	≥ 74.6	\geq 65.3 – 74.6	< 65.3
		TEN	≥ 70.5	$\geq 57.0 - 70.5$	< 57.0
8.	% of individuals as <i>Lepomis</i> species	COO	≤ 11.4	\leq 22.7 $-$ 11.4	> 22.7
		TEN	≤ 9.3	$\leq 18.5 - 9.3$	> 18.5
9.	% of individuals as insectivorous cyprinids	COO	≥ 31.2	$\geq 15.6 - 31.2$	< 15.6
		TEN	≥ 29.4	$\geq 14.7 - 29.4$	< 14.7
10.	% of individuals as generalist feeders and herbivores ^a	COO	≤ 38.1	\leq 64.6 – 38.1	> 64.6
		TEN	≤ 53.2	\leq 71.9 – 53.2	> 71.9
	% of individuals as top carnivores ^b	COO	$\geq 4.8 - \leq 6.6$	$\geq 3.0 - 4.8$	< 3.0
				$> 6.6 - \le 8.4$	> 8.4
		TEN	\geq 5.4 $-\leq$ 7.8	\geq 3.1 – 5.4	< 3.1
				$> 7.8 - \le 10.2$	> 10.2
11.	% of individuals as benthic fluvial specialists	COO	≥ 54.0	$\geq 34.6 - 54.0$	< 34.6
		TEN	≥ 61.4	\geq 39.8 – 61.4	< 39.8
	Abundance and condition metrics				
12.	Number of individuals per 200 meters	COO	≥ 825.9	\geq 487.8 $-$ 825.9	< 487.8
		TEN	≥ 737.1	\geq 440.7 – 737.1	< 440.7
13.	% of individuals with external anomalies	COO	> 0.47 subtract	4 points from total score	
		TEN	> 0.71 subtract	4 points from total score	

 $[\]frac{a}{a}$ used at sites with an upstream drainage basin area < 15 square miles $\frac{b}{a}$ used at sites with an upstream drainage basin area $\frac{a}{a} = 15$ square miles

Table 3. Index of well-being (Iwb) scoring criteria and integrity classes for wadeable streams within the Coosa and Tennessee portions of the Blue Ridge ecoregion of Georgia that are not high-elevation, trout-dominated (see Table 4).

Score	DBA (mi ²)	Integrity Class	Attributes
≥ 8.3	< 15		Comparable to the best regional conditions; all expected species for basin and ecoregion are present given the habitat and stream size; species, including the most
≥ 9.1	≥ 15	Excellent	intolerant, are present and represented by a full array of size classes; species diversity is high; number of individuals and total biomass are high and evenly distributed; each level of the food web is represented, indicating a balanced trophic structure.
≥ 7.5 - 8.3	< 15	Good	Species richness somewhat below expectation; evenness scores decrease as species diversity falls, especially due to loss of the most intolerant species; high number of individuals in the complex with several appaies of borthis fluvial appaieits and
≥ 8.8 - 9.1	≥ 15	Good	individuals in the sample, with several species of benthic fluvial specialists and insectivorous cyprinids present; some decrease in total biomass as trophic structure shows signs of stress.
≥ 6.6 - 7.5	< 15	Fair	Species richness and diversity decline as several expected species are absent; number of individuals declines; total biomass continues to decline with some levels of the food web in low abundance or missing; trophic structure skewed toward generalist
≥ 8.0 - 8.8	≥ 15	ran	feeders and/or <i>Lepomis</i> species as the abundance of insectivorous cyprinid and benthic fluvial specialist species decreases.
≥ 5.6 - 6.6	< 15	D	Number of individuals is low; species richness and diversity are very low, with benthic fluvial specialist and insectivorous cyprinid species in low abundance or
≥ 7.7 - 8.0	≥ 15	Poor	absent; sample dominated by generalist feeders, herbivores, and <i>Lepomis</i> species; increase in the proportions of non-native species and hybrids; growth rates depressed as sample is heavily skewed to the smaller size classes; total biomass low.
< 5.6	< 15	Very Poor	Sample represented by few individuals, mainly generalist feeders and Lepomis
< 7.7	≥ 15	7 C1 y 1 OO1	species; some sites dominated by non-native species; total biomass very low.

Figure 2. Multidimensional scaling ordination plot of average Bray Curtis similarities for Coosa (COO) and Tennessee (TEN) basins. Sites are grouped by fish community similarities and averaged across basin and IBI class.

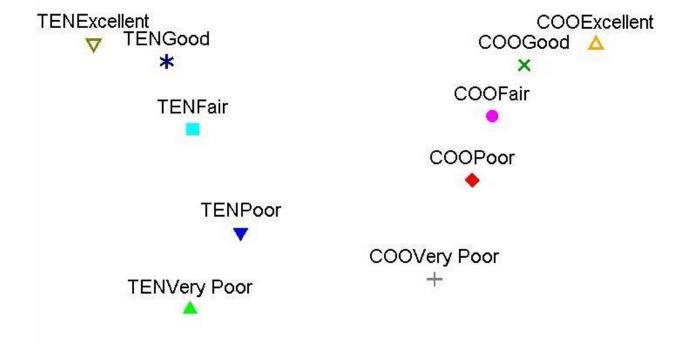


Table 4. Criteria for determining if streams in the Blue Ridge ecoregion (BRM) of Georgia should be scored using the index of biotic integrity (IBI) described in this document. Sites meeting all of the components of criteria 1 OR criteria 2 should not be scored using the BRM IBI outlined in this document.

Criteria	Elevation	DBA (mi ²)	Number Native Species	% Trout by Number
1	> 1400' (COO) > 1800' (TEN)	< 15	≤ 5	≥ 20%
2	≥ 50% Trout by Weight			

References

- Boschung, H.T. and R.L. Mayden. 2004. Fishes of Alabama. Smithsonian Institution. Washington D.C. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Clarke, K.R. and R.M. Warwick. 2001. Change in marine communities: An approach to Statistical Analysis and Interpretation, Second Edition. PRIMER-E: Plymouth, UK.
- Clarke, K.R. and R.N. Gorley. 2006. PRIMER Version 6: User Manual/Tutorial. PRIMER-E: Plymouth, UK.
- Etnier, D.A. and W.C. Starnes. 1993. Fishes of Tennessee. University of Tennessee Press. Knoxville, Tennessee. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Fausch, K.D., J.R. Karr, and P.R. Yant. 1984. Regional Application of an Index of Biotic Integrity Based on Stream Fish Communities. Transactions of the American Fisheries Society, 113:39 55.
- Georgia Department of Natural Resources, Wildlife Resources Division, Nongame Conservation Section. 2010. Protected Speces of Georgia. Available from: http://georgiawildlife.com/sites/default/files/uploads/wildlife/nongame/text/html/protected_species/Fish.html
- Griffith, G.E., J.M. Omernik, J.A. Comstock, S. Lawrence, and T. Foster. 2001. Level III and IV Ecoregions of Georgia (color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia. U.S. Geological Survey.
- Jenkins, R.E. and N.M. Burkhead. 1994. Fishes of Virginia. American Fisheries Society. Methesda, Maryland. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer, Jr. 1980. Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, North Carolina. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Lyons, J. 1992. Using the Index of Biotic Integrity (IBI) to Measure Environmental Quality in Warmwater Streams of Wisconsin. North Central Forest Experiment Station. U.S. Department of Agriculture, Forest Service. General Technical Report NC-149.
- Straight, C.A., B. Albanese, and B.J. Freeman. Updated 2009 March 25. Georgia Museum of Natural History. Available from: http://fishesofgeorgia.uga.edu
- Vannote, R.L, G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, Vol 37: 130 137.

Figure 1. Level III Blue Ridge ecoregion (outlined in red) in Georgia. Major river basins include the Chattahoochee, Coosa, Savannah, and Tennessee

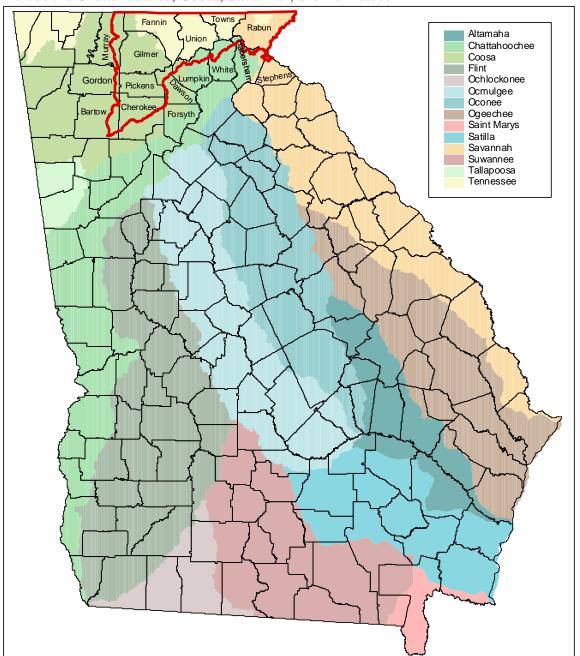


Table 1. State and federal rankings for fish found in the Coosa and Tennessee portions of the Blue Ridge ecoregion of Georgia (Georgia Department of Natural Resources Nongame Conservation Section, 2010).

Species	State	Federal	Basin
Blotched chub (Erimystax insignis)*	E		TEN
Blue shiner (Cyprinella caerulea)*	E	T	COO
Bridled darter (Percina kusha)*	E		COO
Burrhead shiner (Notropis asperifrons)*	T		COO
Cherokee darter (Etheostoma scotti)*	T	T	COO
Coosa chub (Macrhybopsis sp. Coosa chub)	E		COO
Dusky darter (Percina sciera)	R		TEN
Etowah darter (Etheostoma etowahae)*	E	E	COO
Fatlips minnow (Phenacobius crassilabrum)*	E		TEN
Goldline darter (Percina aurolineata)*	E	T	COO
Greenfin darter (Etheostoma chlorobranchium)*	T		TEN
Holiday darter (Etheostoma brevirostrum)*	E		COO
Lined chub (Hybopsis lineapunctata)*	R		COO
Olive darter (Percina squamata)	E		TEN
River redhorse (Moxostoma carinatum)*	R		COO/TEN
Rock darter (Etheostoma rupestre)	R		COO
Sicklefin redhorse (Moxostoma sp. sicklefin redhorse)	E	C	TEN
Silver shiner (Notropis photogenis)	E		TEN
Tangerine darter (Percina aurantiaca)	E		TEN
Trispot darter (Etheostoma trisella)*	E		COO
Wounded darter (Etheostoma vulneratum)	E		TEN

Status: E = endangered; R = rare; T = threatened; C = candidate

Basin: COO = Coosa; TEN = Tennessee

*Collected by GAWRD-SST

Table 2. Index of Biotic Integrity metrics for wadeable streams within the Coosa and Tennessee portions of the Blue Ridge ecoregion of Georgia, that are not high-elevation, trout-dominated (see Table 4). Scoring criteria include slopes of each trisection line (and coordinates where slope of trisection line becomes zero) for metrics 1 – 6 and numerical breaks for metrics 7 - 13.

	Metric	Basin Group	Scoring Criteria		
	Species Richness Metrics		5/3 Breaks	3/1 Breaks	
1.	Number of native species	COO	y = 5.12x + 10.20 (1.91, 20.00)	y = 2.56x + 5.10 (1.91, 10.00)	
		TEN	y = 3.94x + 7.78 (1.72,14.67)	y = 1.97x + 3.89 (1.72, 7.33)	
2.	Number of benthic fluvial specialist species	COO	y = 1.38x + 2.75 (2.35, 6.00)	y = 0.69x + 1.38 (2.35, 3.00)	
		TEN	y = 1.01x + 2.00 (1.31, 3.33)	y = 0.50x + 1.00 (1.31, 1.67)	
3.	Number of native sunfish species ^a	COO	y = 0.94x + 1.87 (0.84, 2.67)	y = 0.47x + 0.93 (0.84, 1.33)	
		TEN	y = 0.64x + 1.27 (2.17, 2.67)	y = 0.32x + 0.63 (2.17, 1.33)	
	Number of native centrarchid species ^b	COO	y = 1.21x + 2.40 (1.86, 4.67)	y = 0.60x + 1.20 (1.86, 2.33)	
		TEN	y = 0.87x + 1.72 (1.82, 3.33)	y = 0.44x + 0.86 (1.82, 1.67)	
4.	Number of native insectivorous cyprinid species	COO	y = 1.16x + 2.28 (2.04, 4.67)	y = 0.58x + 1.14 (2.04, 2.33)	
		TEN	y = 1.21x + 2.40 (2.39, 5.33)	y = 0.61x + 1.20 (2.39, 2.67)	
5.	Number of native round-bodied sucker species	COO	y = 0.67x + 1.57 (2.28, 3.33)	y = 0.33x + 0.78 (2.28, 1.67)	
		TEN	y = 0.60x + 1.20 (2.43, 2.67)	y = 0.30x + 0.60 (2.43, 1.33)	
6.	Number of sensitive species ^a	COO	y = 0.67x + 1.30 (2.05, 2.67)	y = 0.33x + 0.65 (2.05, 1.33)	
		TEN	y = 0.87x + 1.73 (1.84, 3.33)	y = 0.43x + 0.87 (2.05, 1.67)	
	Number of intolerant species ^b	COO	y = 0.83x + 1.63 (5.20, 6.00)	y = 0.42x + 0.82 (5.20, 3.00)	
	•	TEN	y = 1.00x + 2.00 (1.33, 3.33)	y = 0.50x + 1.00 (1.33, 1.67)	
			, = (=	J 213 312 1 213 3 (2122) 2137)	

Table 2 continued.

	Metric	Basin Group	Sco	ring Criteria	
	Species Composition Metrics		<u>5</u>	<u>3</u>	<u>1</u>
7.	Evenness	COO	≥ 74.6	\geq 65.3 – 74.6	< 65.3
		TEN	≥ 70.5	\geq 57.0 – 70.5	< 57.0
8.	% of individuals as <i>Lepomis</i> species	COO	≤ 11.4	\leq 22.7 $-$ 11.4	> 22.7
		TEN	≤ 9.3	$\leq 18.5 - 9.3$	> 18.5
9.	% of individuals as insectivorous cyprinids	COO	≥ 31.2	$\geq 15.6 - 31.2$	< 15.6
		TEN	≥ 29.4	$\geq 14.7 - 29.4$	< 14.7
10.	% of individuals as generalist feeders and herbivores ^a	COO	≤ 38.1	\leq 64.6 – 38.1	> 64.6
		TEN	≤ 53.2	\leq 71.9 – 53.2	> 71.9
	% of individuals as top carnivores ^b	COO	\geq 4.8 $ \leq$ 6.6	\geq 3.0 – 4.8	< 3.0
				$> 6.6 - \le 8.4$	> 8.4
		TEN	$\geq 5.4 - \leq 7.8$	\geq 3.1 – 5.4	< 3.1
				$> 7.8 - \le 10.2$	> 10.2
11.	% of individuals as benthic fluvial specialists	COO	≥ 54.0	\geq 34.6 – 54.0	< 34.6
		TEN	≥ 61.4	\geq 39.8 $-$ 61.4	< 39.8
	Abundance and condition metrics				
12.	Number of individuals per 200 meters	COO	≥ 825.9	\geq 487.8 $-$ 825.9	< 487.8
		TEN	≥ 737.1	\geq 440.7 – 737.1	< 440.7
13.	% of individuals with external anomalies	COO	> 47 subtract 4	points from total score	
		TEN	> 71 subtract 4	points from total score	

a used at sites with an upstream drainage basin area < 15 square miles b used at sites with an upstream drainage basin area ≥ 15 square miles

Table 3. Index of well-being (Iwb) scoring criteria and integrity classes for wadeable streams within the Coosa and Tennessee portions of the Blue Ridge ecoregion of Georgia that are not high-elevation, trout-dominated (see Table 4).

Score	DBA (mi ²)	Integrity Class	Attributes
≥ 8.3	< 15	E 11 4	Comparable to the best regional conditions; all expected species for basin and ecoregion are present given the habitat and stream size; species, including the most
≥ 9.1	≥ 15	Excellent	intolerant, are present and represented by a full array of size classes; species diversity is high; number of individuals and total biomass are high and evenly distributed; each level of the food web is represented, indicating a balanced trophic structure.
≥ 7.5 - 8.3	< 15	Good	Species richness somewhat below expectation; evenness scores decrease as species diversity falls, especially due to loss of the most intolerant species; high number of individuals in the sample, with several species of benthic fluvial specialists and
≥ 8.8 - 9.1	≥ 15	Good	insectivorous cyprinids present; some decrease in total biomass as trophic structure shows signs of stress.
≥ 6.6 - 7.5	< 15	Fair	Species richness and diversity decline as several expected species are absent; number of individuals declines; total biomass continues to decline with some levels of the food web in low abundance or missing; trophic structure skewed toward generalist
≥ 8.0 - 8.8	≥ 15	i an	feeders and/or <i>Lepomis</i> species as the abundance of insectivorous cyprinid and benthic fluvial specialist species decreases.
≥ 5.6 - 6.6	< 15	Poor	Number of individuals is low; species richness and diversity are very low, with benthic fluvial specialist and insectivorous cyprinid species in low abundance or absent; sample dominated by generalist feeders, herbivores, and <i>Lepomis</i> species;
≥ 7.7 - 8.0	≥ 15	1 001	increase in the proportions of non-native species and hybrids; growth rates depressed as sample is heavily skewed to the smaller size classes; total biomass low.
< 5.6	< 15	Very Poor	Sample represented by few individuals, mainly generalist feeders and Lepomis
< 7.7	≥ 15	. 61 / 1 001	species; some sites dominated by non-native species; total biomass very low.

Figure 2. Multidimensional scaling ordination plot of average Bray Curtis similarities for Coosa (COO) and Tennessee (TEN) basins. Sites are grouped by fish community similarities and averaged across basin and IBI class.

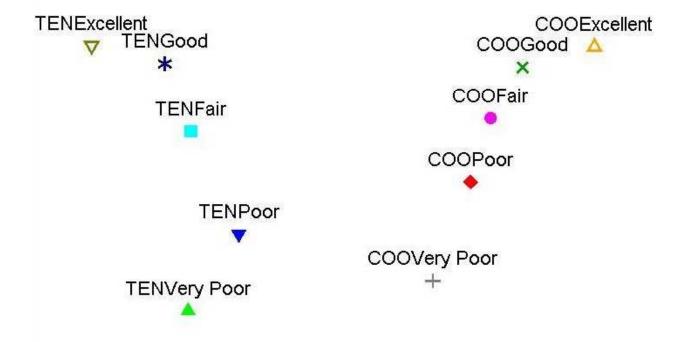


Table 4. Criteria for determining if streams in the Blue Ridge ecoregion (BRM) of Georgia should be scored using the index of biotic integrity (IBI) described in this document. Sites meeting all of the components of criteria 1 OR criteria 2 should not be scored using the BRM IBI outlined in this document.

Criteria	Elevation	DBA (mi ²)	Number Native Species	% Trout by Number
1	> 1400' (COO) > 1800' (TEN)	< 15	≤ 5	≥ 20%
2	≥ 50% Trout by Weight			

References

- Boschung, H.T. and R.L. Mayden. 2004. Fishes of Alabama. Smithsonian Institution. Washington D.C. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Clarke, K.R. and R.M. Warwick. 2001. Change in marine communities: An approach to Statistical Analysis and Interpretation, Second Edition. PRIMER-E: Plymouth, UK.
- Clarke, K.R. and R.N. Gorley. 2006. PRIMER Version 6: User Manual/Tutorial. PRIMER-E: Plymouth, UK.
- Etnier, D.A. and W.C. Starnes. 1993. Fishes of Tennessee. University of Tennessee Press. Knoxville, Tennessee. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Fausch, K.D., J.R. Karr, and P.R. Yant. 1984. Regional Application of an Index of Biotic Integrity Based on Stream Fish Communities. Transactions of the American Fisheries Society, 113:39 55.
- Georgia Department of Natural Resources, Wildlife Resources Division, Nongame Conservation Section. 2010. Protected Speces of Georgia. Available from: http://georgiawildlife.com/sites/default/files/uploads/wildlife/nongame/text/html/protected_species/Fish.html
- Griffith, G.E., J.M. Omernik, J.A. Comstock, S. Lawrence, and T. Foster. 2001. Level III and IV Ecoregions of Georgia (color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia. U.S. Geological Survey.
- Jenkins, R.E. and N.M. Burkhead. 1994. Fishes of Virginia. American Fisheries Society. Methesda, Maryland. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer, Jr. 1980. Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, North Carolina. (Cited as a work rather than as individual species accounts in the interest of space, Appendix A).
- Lyons, J. 1992. Using the Index of Biotic Integrity (IBI) to Measure Environmental Quality in Warmwater Streams of Wisconsin. North Central Forest Experiment Station. U.S. Department of Agriculture, Forest Service. General Technical Report NC-149.
- Straight, C.A., B. Albanese, and B.J. Freeman. Updated 2009 March 25. Georgia Museum of Natural History. Available from: http://fishesofgeorgia.uga.edu
- Vannote, R.L, G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, Vol 37: 130 137.

Aı	ope	nd	ix	A
	5 P C	11 W	- 1 B	

Coosa and Tennessee Blue Ridge Ecoregion Fish List Including Tolerance Rankings, Feeding Guilds, Species Categories, and Federal and State Rankings

Fishes of the Coosa and Tennessee River Basins within the Blue Ridge Ecoregion of Georgia.

Species	Tolerance Ranking	Feeding Guild	Species Category	Drainage Basin	Federal Status	State Satus
		Petromyzonti	dae			
Chestnut Lamprey* Ichthyomyzon castaneus		PR		COO, TEN		
Southern Brook Lamprey* Ichthyomyzon gagei		НВ		COO		
Mountain Brook Lamprey* Ichthyomyzon greeleyi	INT	НВ		TEN		
Least Brook Lamprey Lampetra aepyptera	INT	НВ		COO		
		Lepisosteida	20			
Longnose Gar Lepisosteus osseus		CR	46	COO, TEN		
Gizzard Shad Dorosoma cepedianum*		Clupeidae OM		COO, TEN		
Threadfin Shad Dorosoma petenense		OM		COO, TEN		
		Cii-l-	_			
Central Stoneroller* Campostoma anomalum		Cyprinida HB	e	TEN		
Largescale Stoneroller* Campostoma oligolepis		НВ		COO, TEN		
Rosyside Dace* Clinostomus funduloides		IN		TEN		
Blue Shiner* Cyprinella caerulea	INT	IN	BFS	COO	T	Е
Alabama Shiner* Cyprinella callistia		IN	BFS	COO		
Whitetail Shiner* Cyprinella galactura		IN	BFS	TEN		
Tricolor Shiner* Cyprinella trichroistia		IN		COO		
Blacktail shiner* Cyprinella venusta		IN		COO		
Common Carp* Cyprinus carpio		GE		EXOTIC		
Blotched Chub* Erimystax insignis		OM	BFS	TEN		Е

WHID — Stream Survey Team A2

Species	Tolerance Ranking	Feeding Guild	Species Category	Drainage Basin	Federal Status	State Satus
Bigeye Chub* Hybopsis amblops		IN	BFS	TEN		
Lined Chub* Hybopsis lineapunctata	INT	IN	BFS	COO		R
Striped Shiner* Luxilus chrysocephalus		IN		COO, TEN		
Warpaint Shiner* Luxilus coccogenis		IN		TEN		
Bandfin Shiner* Luxilus zonistius		IN		COO**		
Mountain Shiner* Lythrurus lirus	INT	IN		COO		
Coosa Chub Macrhybopsis sp. Coosa Chub	INT	IN	BFS	COO		E
Bluehead Chub* Nocomis leptocephalus		OM		COO, TEN**		
River Chub* Nocomis micropogon		ОМ		COO**, TEN		
Golden Shiner* Notemigonus crysoleucas		GE		COO, TEN		
Burrhead Shiner* Notropis asperifrons	INT	IN		COO		T
Rainbow Shiner* Notropis chrosomus	HWI	IN		COO		
Tennessee Shiner* Notropis leuciodus		IN		TEN		
Longnose Shiner Notropis longirostris		IN	BFS	COO		
Yellowfin Shiner* Notropis lutipinnis		IN		COO, TEN		
Silver Shiner Notropis photogenis		IN		TEN		Е
Mirror Shiner* Notropis spectrunculus		IN	BFS	TEN		
Silverstripe Shiner* Notropis stilbius		IN		COO		
Telescope Shiner Notropis telescopus		IN		TEN		
Coosa Shiner* Notropis xaenocephalus		IN		COO		
GWRD - Stream Survey Team		4.2			Marcinek April 2011	

A3

Species	Tolerance Ranking	Feeding Guild	Species Category	Drainage Basin	Federal Status	State Satus
Riffle Minnow* Phenacobius catostomus	INT	IN	BFS	COO		
Fatlips Minnow* Phenacobius crassilabrum	INT	IN	BFS	TEN		E
Bullhead Minnow Pimephales vigilax		OM		COO		
Blacknose Dace* Rhinichthys atratulus		IN	BFS	COO, TEN		
Longnose Dace* Rhinichthys cataractae	HWI	IN	BFS	TEN		
Creek Chub* Semotilus atromaculatus		GE		COO, TEN		
		Catostomid	ae			
White Sucker* Catostomus commersoni		IN	BFS	TEN		
Alabama Hogsucker* Hypentelium etowanum		IN	BFS	COO		
Northern Hogsucker* Hypentelium nigricans		IN	BFS	COO, TEN		
Spotted Sucker* Minytrema melanops		IN	BFS	COO, TEN		
Silver Redhorse Moxostoma anisurum		IN	BFS	TEN		
River Redhorse* Moxostoma carinatum	INT	IN	BFS	COO, TEN		R
Black Redhorse* Moxostoma duquesnei	INT	IN	BFS	COO, TEN		
Golden Redhorse* Moxostoma erythrurum		IN	BFS	COO, TEN		
Blacktail Redhorse* Moxostoma poecilurum		IN	BFS	COO		
Sicklefin Redhorse Moxostoma sp. sicklefin redhorse	INT	IN	BFS	TEN	С	E
		Ictalurida	e			
Snail Bullhead* Ameiurus brunneus		GE	-	COO, TEN**		
Black Bullhead* Ameiurus melas		GE		COO, TEN		
Yellow Bullhead* Ameiurus natalis		GE		COO, TEN		

A4

Species	Tolerance Ranking	Feeding Guild	Species Category	Drainage Basin	Federal Status	State Satus
Brown Bullhead* Ameiurus nebulosus		GE	<u> </u>	COO, TEN		
Flat Bullhead* Ameiurus platycephalus		GE		TEN**		
Channel Catfish* Ictalurus punctatus		GE		COO, TEN		
Speckled Madtom* Noturus leptacanthus		BI	BFS	COO		
F lathead Catfish Pylodictis olivaris		CR		COO, TEN		
		Salmonidae	;			
Rainbow Trout* Oncorhynchus mykiss		CR		EXOTIC		
Brown Trout* Salmo trutta		CR		EXOTIC		
Brook Trout* Salvelinus fontinalis	INT	CR		COO**, TEN		
Southern Studfish* Fundulus stellifer		Fundulidae IN		COO		
Mosquitofish* <i>Gambusia</i> sp.		Poeciliidae GE		COO, TEN		
Mottled Sculpin* Cottus bairdi		Cottidae GE	BFS	COO, TEN		
Banded Sculpin* Cottus carolinae		GE	BFS	COO, TEN		
		Percichthyid	ae			
White Bass Morone chrysops		CR		COO**, TEN		
Striped Bass Morone saxatilis		CR		COO		
		Centrarchida				
Shadow Bass* Ambloplites ariommus	INT	CR	SF	COO		
Rock Bass* Ambloplites rupestris	INT	CR	SF	TEN		
Redbreast Sunfish* Lepomis auritus		IN	SF	COO**, TEN**		
Green Sunfish* Lepomis cyanellus		GE	SF	COO, TEN		
GWRD - Stream Survey Team		A5			Marcinek April 2011	

Species	Tolerance Ranking	Feeding Guild	Species Category	Drainage Basin	Federal Status	State Satus
Warmouth* Lepomis gulosus	J	CR	SF	COO, TEN		
Bluegill* Lepomis macrochirus		IN	SF	COO, TEN		
Longear Sunfish* Lepomis megalotis		IN	SF	COO, TEN		
Redear Sunfish* Lepomis microlophus		IN	SF	COO, TEN		
Spotted Sunfish* Lepomis punctatus x miniatus		IN	SF	COO		
Redeye Bass* Micropterus coosae		CR		COO, TEN**		
Smallmouth Bass* Micropterus dolomieu		CR		TEN		
Spotted Bass* Micropterus punctulatus		CR		COO, TEN		
Largemouth bass* Micropterus salmoides		CR		COO, TEN		
White crappie Pomoxis annularis		CR		COO, TEN		
Black crappie Pomoxis nigromaculatus		CR		COO, TEN		
Greenside darter* Etheostoma blennioides		Percidae IN	BFS	TEN		
Holiday darter* Etheostoma brevirostrum	INT	IN	BFS	COO		E
Greenfin darter* Etheostoma chlorobranchium		IN	BFS	TEN		T
Coosa darter* Etheostoma coosae		IN	BFS	COO		
Etowah darter* Etheostoma etowahae	INT	IN	BFS	COO	Е	E
Greenbreast darter* Etheostoma jordani	INT	IN	BFS	COO		
Redline darter* Etheostoma rufilineatum		IN	BFS	TEN		
Rock darter Etheostoma rupestre		IN	BFS	COO		R

GWED – Stream Survey Team $oldsymbol{\mathsf{A}}$

Species	Tolerance Ranking	Feeding Guild	Species Category	Drainage Basin	Federal Status	State Satus
Cherokee darter* Etheostoma scotti		IN	BFS	COO	T	Т
Speckled darter* Etheostoma stigmaeum		IN	BFS	COO		
Trispot darter* Etheostoma trisella	INT	IN	BFS	COO		E
Wounded darter Etheostoma vulneratum	INT	IN	BFS	TEN		Е
Banded darter* Etheostoma zonale		IN	BFS	TEN		
Yellow perch* Perca flavescens		CR		EXOTIC		
Tangerine darter <i>Percina aurantiaca</i>		IN	BFS	TEN		Е
Goldline darter* Percina aurolineata	INT	IN	BFS	COO	T	Е
Gilt darter* Percina evides	INT	IN	BFS	TEN		
Mobile logperch* Percina kathae		IN	BFS	COO		
Blackbanded darter* Percina nigrofasciata		BI	BFS	COO		
Bronze darter* Percina palmaris		BI	BFS	COO		
Dusky darter Percina sciera		BI	BFS	TEN		R
Olive darter Percina squamata	INT	BI	BFS	TEN		R
Bridled darter* Percina kusha	INT	BI	BFS	COO		E

^{*}Collected by GAWRD Stream Survey Team

Pollution Tolerance: **HWI** = headwater intolerant; **INT** = intolerant

Feeding Guild: **CR** = carnivore; **GE** = generalist; **HB** = herbivore; **OM** = omnivore; **IN** = invertivore;

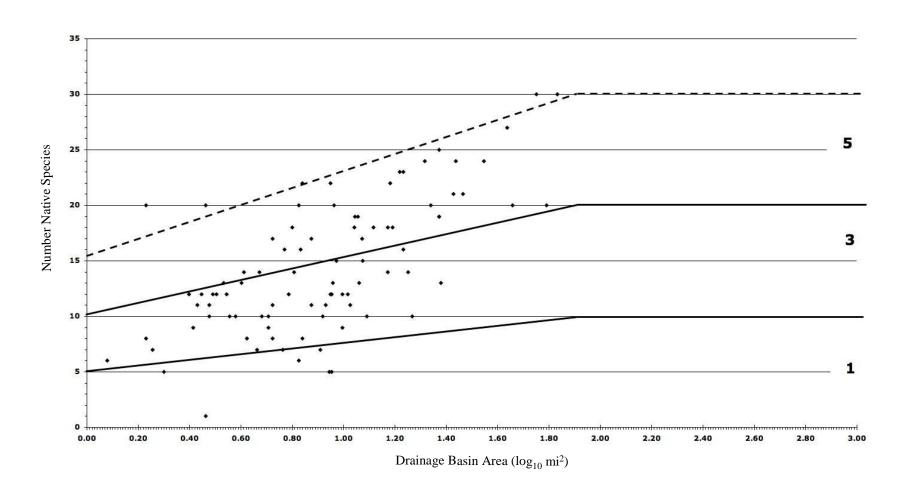
BI = benthic invertivore; **PR** = parasitic

Species Category: **BFS** = benthic fluvial specialist; **SF** = sunfish species; Drainage Basin: **COO** = Coosa; **TEN** = Tennessee; **EXOTIC** = introduced to Georgia;

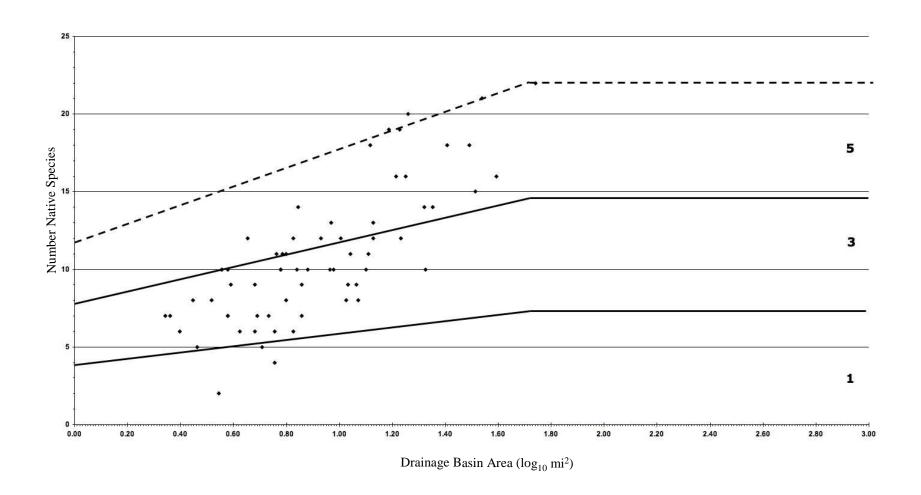
** introduced to basin

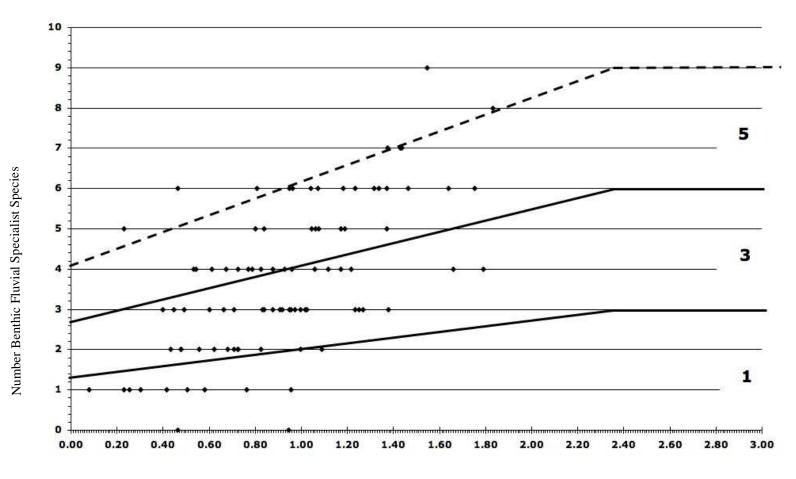
Status: E = endangered; T = threatened; R = rare; C = of concern

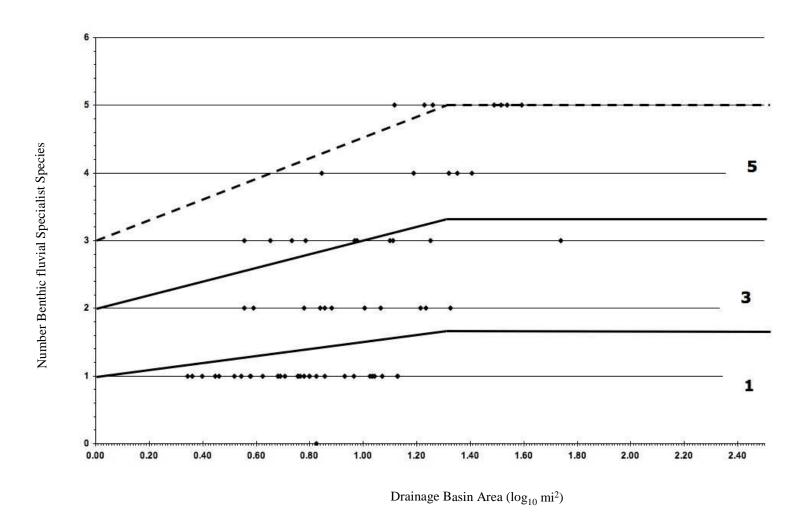
GWRD - Stream Survey Team A7

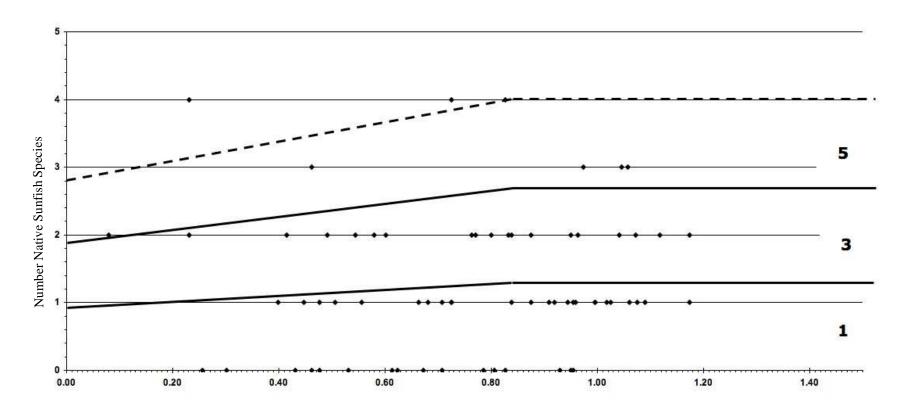

Appendix B

Blue Ridge Ecoregion Maximum Species Richness Graphs, Metrics 1 - 6, for the Coosa and Tennessee Basins

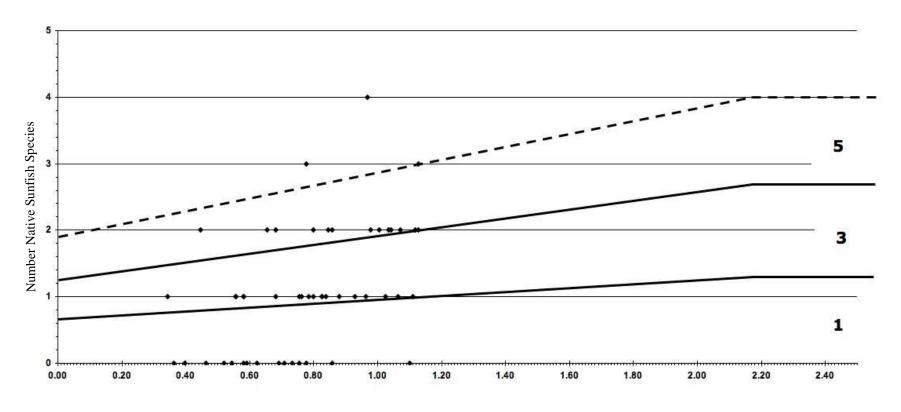

EXAMPLE. Maximum species richness graph. Maximum species richness (denoted by dashed line) drawn by eye, and the area below trisected to determine the cutoffs for scoring breaks (Lyons 1992). Sites falling on the line are scored up. Actual graphs are truncated at the y-axis, as sites with drainage basin areas < 1 mi² are not to be scored using these criteria.


Metric 1 Coosa. Total number of native species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

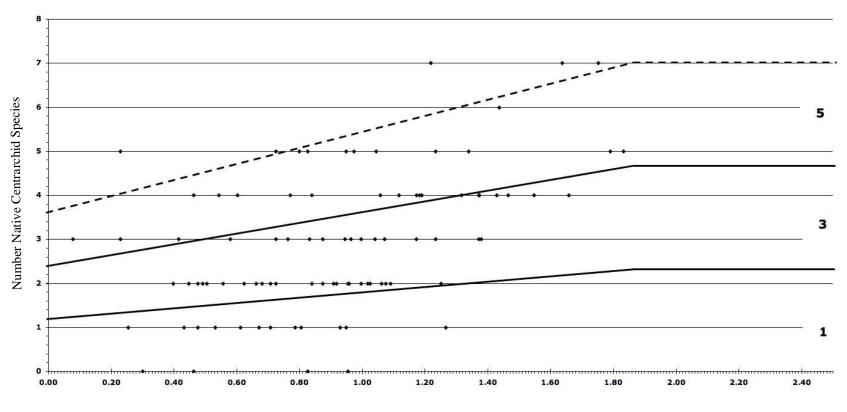

Metric 1 Tennessee. Total number of native species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.


Metric 2 Coosa. Total number of benthic fluvial specialist species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

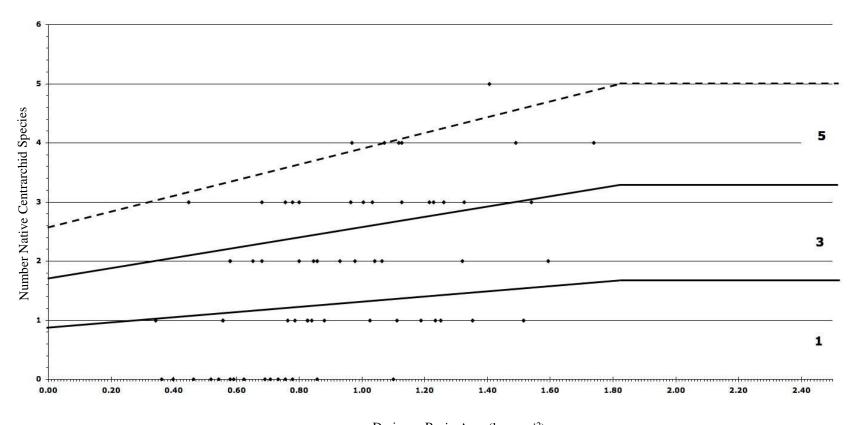
Metric 2 Tennessee. Total number of benthic fluvial specialist species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.



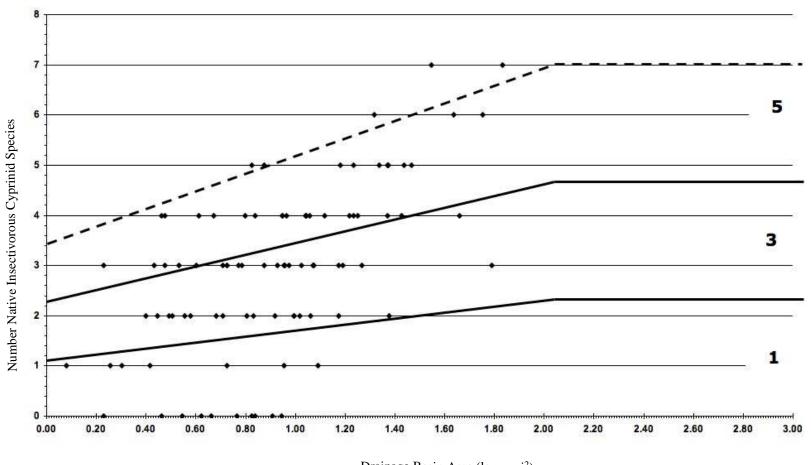
Metric 3a Coosa. Total number of native sunfish species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.


Drainage Basin Area (log₁₀ mi²)

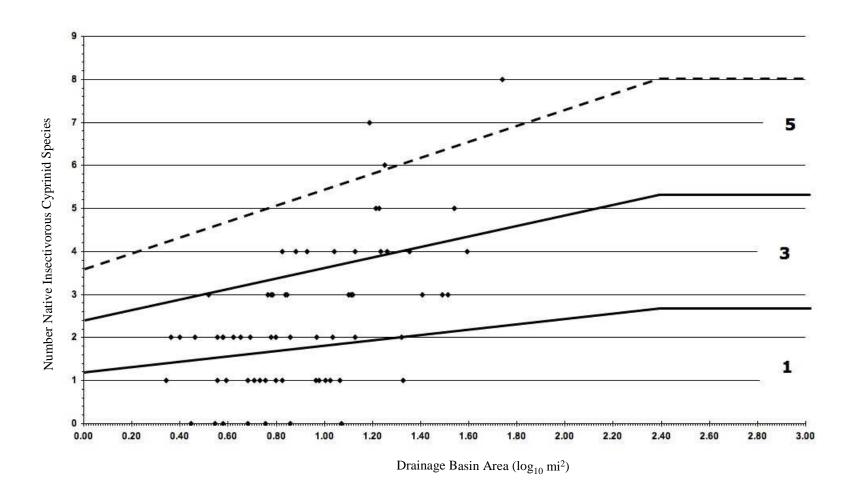
Metric 3a Tennessee. Total number of native sunfish species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.


Drainage Basin Area (log₁₀ mi²)

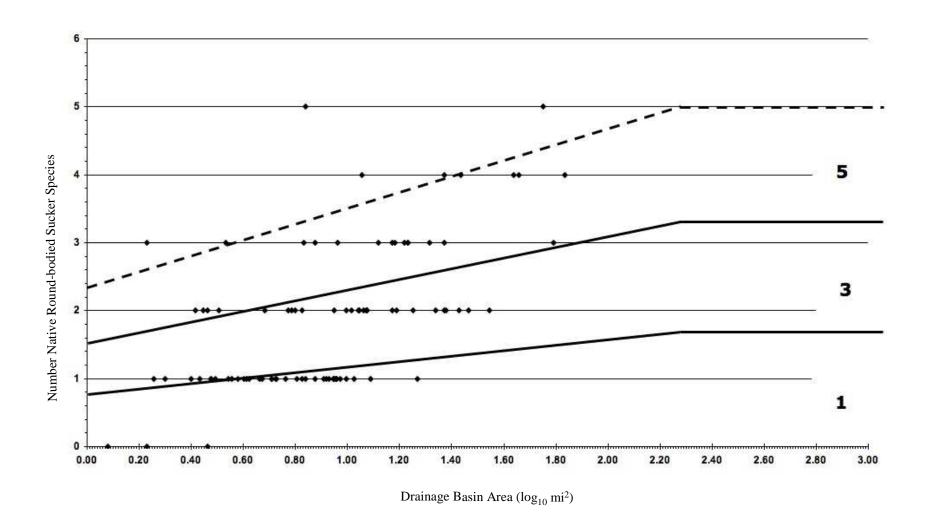
Metric 3b Coosa. Total number of native centrarchid species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

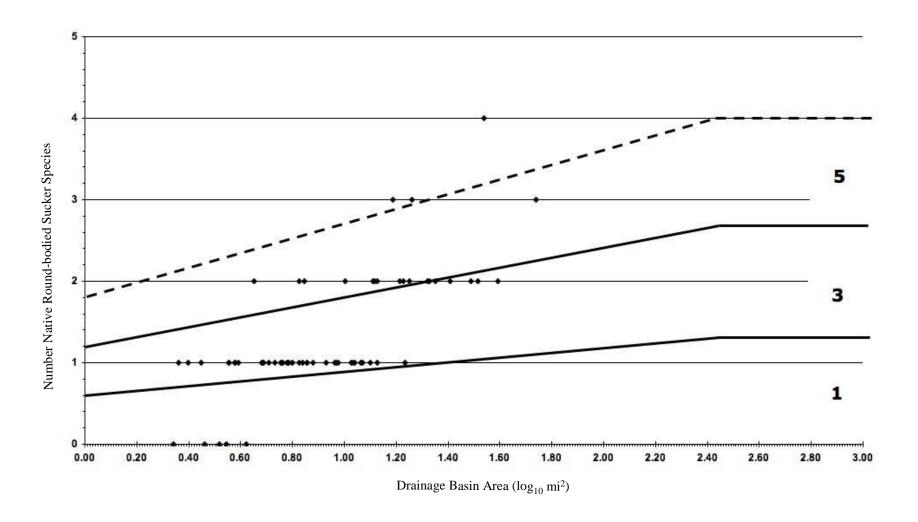

Drainage Basin Area (log₁₀ mi²)

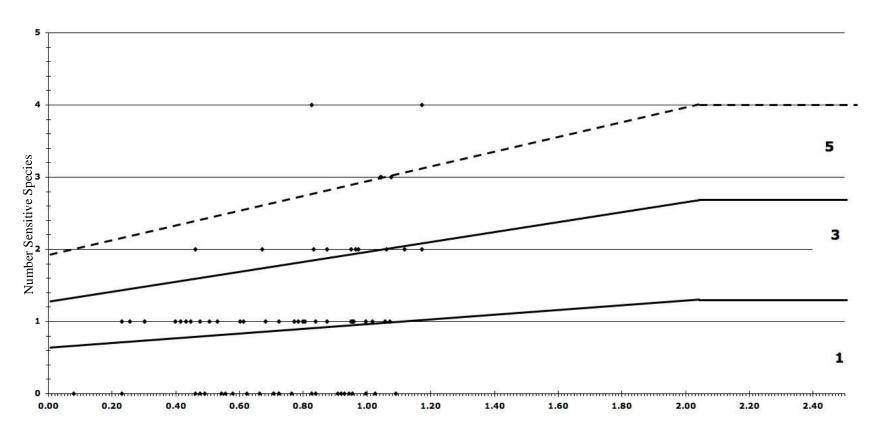
Metric 3b Tennessee. Total number of native centrarchid species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.



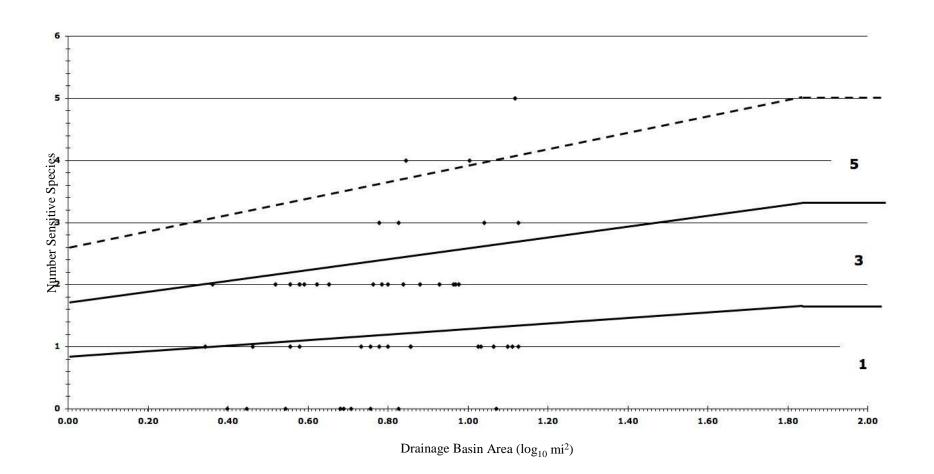
Drainage Basin Area ($\log_{10} \text{mi}^2$)


Metric 4 Coosa. Total number of native insectivorous cyprinid species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

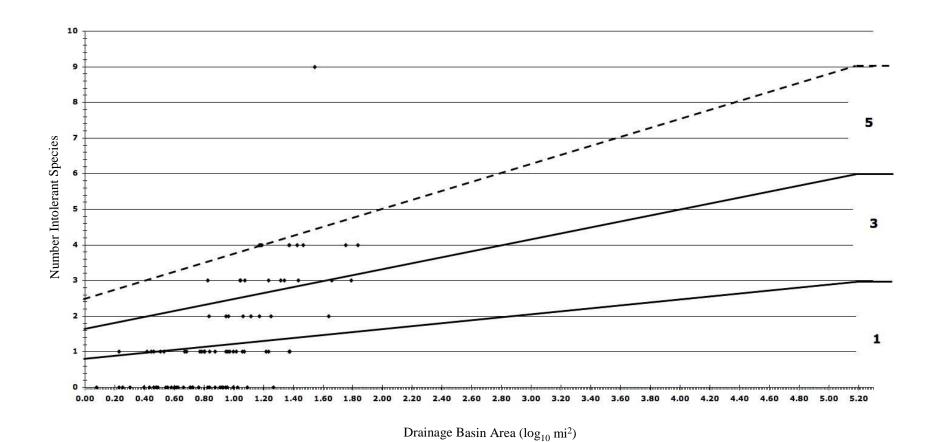

Metric 4 Tennessee. Total number of native insectivorous cyprinid species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.


Metric 5 Coosa. Total number of native round-bodied sucker species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

Metric 5 Tennessee. Total number of native round-bodied sucker species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

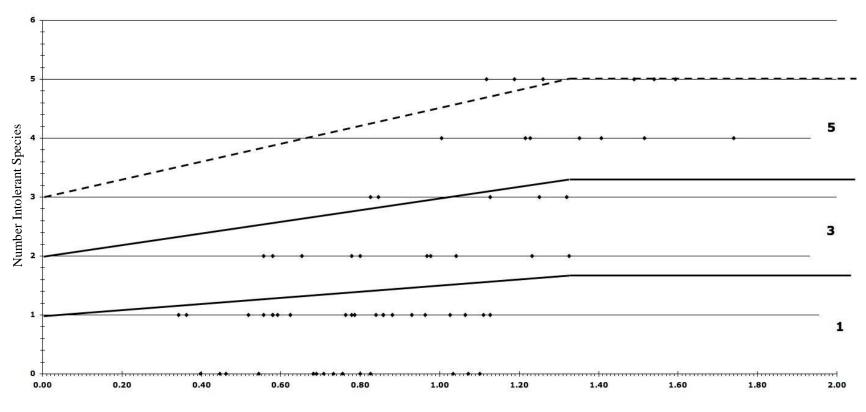


Metric 6a Coosa. Total number of sensitive species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.



Drainage Basin Area (log₁₀ mi²)

Metric 6a Tennessee. Total number of sensitive species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.



Metric 6b Coosa. Total number of intolerant species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

B17

Metric 6b Tennessee. Total number of intolerant species in the Blue Ridge ecoregion plotted against the transformed drainage basin area. Maximum species richness denoted by dashed line.

Drainage Basin Area (log₁₀ mi²)